Hydrosilylation catalysed by a rhodium complex in a supercritical CO_2 /ionic liquid system

Jiayun Li, ab Jiajian Peng, *a Guodong Zhang, a Ying Bai, a Guoqiao Lai *a and Xiaonian Li b

Received (in Victoria, Australia) 8th January 2010, Accepted 24th February 2010 First published as an Advance Article on the web 30th March 2010 DOI: 10.1039/c0nj00012d

The hydrosilylation of alkenes in a supercritical CO_2 (sc CO_2)/ionic liquid (IL) system was investigated. Rh(PPh₃)₃Cl exhibited excellent catalytic activity and selectivity. KO'Bu was used as an additive, and no hydrogenation by-product (alkane) was detected in the sc CO_2 /IL system. During hydrosilylation in the sc CO_2 /IL system, the reactants were possibly transferred into the IL phase by sc CO_2 , in which the catalyst was dissolved. The products can be flushed with sc CO_2 after the reaction and the catalyst/IL system reused.

1. Introduction

A great deal of research had been devoted to the use of scCO₂ for the extraction of useful materials, such as oils, from natural products. 1-3 ScCO₂ is an inexpensive, environmentally benign alternative to conventional solvents for chemical synthesis. 4-6 Room temperature ionic liquids (ILs), which consist entirely of ions, have attracted much interest as novel, environmentally friendly benign media in catalyst systems. Many organic reactions had been performed in ILs with excellent yields and chemo- and/or enantioselectivity. 7,8 There are only a few examples of hydrosilylation using ILs. 9-13 Recently, our group 14 reported that Rh(PPh₃)₃Cl/IL (molten salt) could be used in the hydrosilylation process as a thermoregulated and recyclable catalyst system that combines the advantages of an IL with convenient product separation. Very recently, the first industrial application of hydrosilylation catalysis in ILs for synthesis of organofunctional silanes was reported.¹³

Carbon dioxide under supercritical conditions (scCO₂) has dual properties; it behaves as a gas with high diffusivity and as a liquid with high solubility, which enables scCO₂ to diffuse easily through complex matrices and extract the desired substances. scCO₂ combined with an IL had been studied by Brennecke *et al.*, who showed that CO₂ could be dissolved significantly into the lower IL phase, but that no polar IL could be dissolved into the scCO₂ phase. Therefore, it is expected that the reaction performance will differ with CO₂ dissolved in different ILs. Here, we describe a new hydrosilylation process in a scCO₂/IL system with a rhodium complex as the catalyst. During this process, 1,3-dialkylimidazolium-2-carboxylates, which are used as *N*-heterocyclic carbene (NHC) ligand precursors, were synthesized by the

2. Results and discussion

The hydrosilylation reaction (Fig. 1) was performed in 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF₆). Wilkinson's catalyst, Rh(PPh3)3Cl, showed a low level of catalytic activity (Table 1, entry 1). A high level of conversion was obtained in the scCO₂ system, but only a low level of selectivity for the β-adduct was obtained (Table 1, entry 2). However, both higher catalytic activity and selectivity for the β-adduct were obtained when the hydrosilylation reaction was undertaken in the scCO₂/BMImPF₆ biphasic system with Rh(PPh₃)₃Cl as the catalyst (Table 1, entry 3). In comparison with scCO₂/BMImPF₆, when the hydrosilylation reaction was performed in scCO₂/1-methyl-3-hexylimidazolium hexafluorophosphate (HMImPF₆), lower levels of styrene conversion and higher levels of β-adduct selectivity were obtained. Lower conversion and selectivity were obtained in the tetrafluoroborate anion-based IL BMImBF₄ than in BMImPF₆. Our conjecture is that the counterion BF₄ is more nucleophilic than PF₆, and so it reduced the solubility of the silane in the hydrophilic IL BMImBF₄. Higher conversion and selectivity were obtained in the scCO₂/BMImBF₄ system than in the BMImBF₄ system (Table 1, entries 12 and 13). scCO₂ can be used to extract high boiling point organic substances from ILs without cross-contamination of the extract with the IL. During hydrosilylation in the scCO₂/IL system, the reactants were possibly transferred into the IL phase by scCO2, in which the catalyst was dissolved. The products can be flushed with scCO₂ after the reaction. Therefore, the results show that a high level of conversion was obtained in the presence of scCO₂. Furthermore, the by-product (ethylbenzene) was not detected when KO'Bu was added (Table 1, entry 4). It is possible that a rhodium N-heterocyclic carbene complex was formed in the hydrosilylation reaction.¹⁸ 1-Methyl-3-butylimidazolium-2-carboxylate was synthesized by the direct carboxylation of 1-methyl-3-butylimidazolium hexafluorophosphate with CO₂ in the presence of KO'Bu, and then

direct carboxylation of 1,3-dialkylimidazolium hexafluoro-phosphates with CO₂.

^a Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China.

E-mail: jjpeng@hznu.edu.cn, gqlai@hznu.edu.cn;

Fax: +86 571-28865135; Tel: +86 571-28865136

b Resources & Environment Catalysis Institute of Zhejiang University of Technology, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Hangzhou 310032, China

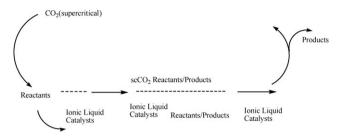


Fig. 1 Hydrosilylation in a supercritical CO₂/IL system.

1-methyl-3-butylimidazolium-2-carboxylate as an N-heterocyclic carbene precursor was reacted with bis(1,5-cyclooctadiene)dichlorodirhodium to form [chloro(1,5-cyclooctadiene)(1-butyl-3-methylimidazole-2-ylidene)rhodium(I)], which was an efficient catalyst for the hydrosilylation reaction. The spectroscopic data (¹H NMR and ¹³C NMR) and elemental analysis data of [chloro(1,5-cyclooctadiene)(1-butyl-3-methylimidazole-2-ylidene)rhodium(1)], and the spectroscopic data (¹H NMR) of 1-methyl-3-butylimidazolium-2-carboxylate, were in agreement with the assigned structures. Additionally, the results presented in Table 1 show that the catalytic activity of [Rh(cod)Cl]₂ was much lower than that of Rh(PPh₃)₃Cl in the scCO₂/BMImPF₆ system (Table 1, entries 4 and 7). The role of PPh₃ is thought to improve the catalytic activity and selectivity of the rhodium complex. When other bases, such as NaOH, replaced KO'Bu, the by-product (ethylbenzene) was obtained.

Although the results listed in Table 1 indicate that the conversion of styrene increased with increasing amounts of $Rh(PPh_3)_3Cl$, the selectivity for the β -adduct decreased slightly. Meanwhile, the amount of $BMImPF_6$ used had no effect on the conversion of styrene or the selectivity for the β -adduct (Table 1, entries 7–9).

In addition, it was found that the catalytic activity of Rh(PPh₃)₃Cl and [Rh(cod)Cl]₂ decreased with increasing length of the alkyl chain linked to the N,N-dialkylimidazolium cation in the scCO₂/IL system. In contrast, the selectivity for the β -adduct clearly increased. In particular, a 98.7% selectivity for the β -adduct was achieved when scCO₂/1-butyl-3-octyl-

imidazolium hexafluorophosphate (OBImPF₆) was used as the reaction medium. This result indicates that the substituents attached to the N,N-dialkylimidazolium cation have a strong impact on the catalytic process.

During hydrosilylation in the scCO₂/IL system, the rhodium complexes were insoluble in scCO₂ but soluble in the IL. The reactants were transferred into the IL phase by scCO₂, in which the catalyst was dissolved. The product can be flushed with scCO₂ after the reaction and the catalyst then reused. The results of catalyst recycling are shown in Table 2. Although the conversion in the recycling experiments decreased from 91.3 to 78.5% over four cycles, the selectivity for the β -adduct remained constant at 86.7%.

The effect of reaction temperature on the hydrosilylation is illustrated in Table 3. The results indicate that the conversion of styrene increases with increasing reaction temperature, whereas the selectivity for the β -adduct decreased with increasing reaction temperature.

When other alkenes, such as 1-hexene, 1-heptene, 1-octene, 1-dodecene, 2-methyl-styrene, 4-methyl-styrene, 4-methoxy-styrene, 4-fluoro-styrene and 4-chloro-styrene, replaced styrene as one of the substrates, high levels of conversion and selectivity were obtained with Rh(PPh₃)₃Cl–KO'Bu in the scCO₂/BMImPF₆ system (Table 4). Also, when triethylsilane replaced triethoxysilane as one of the substrates, unsaturated adduct triethyl(styryl)silane was found, because triethylsilane is easier to dehydrogenate than triethoxysilane. When KO'Bu was added to the system of styrene with triethylsilane, no ethylbenzene was detected in the scCO₂/BMImPF₆.

3. Experimental

3.1 General methods

Styrene was washed with 5% (w/v) NaOH and dried over Na₂SO₄. After filtration, the styrene was distilled under reduced pressure. All other substances were purchased from Aldrich and used as received. Rh(PPh₃)₃Cl and [Rh(cod)Cl]₂ were prepared as previously described.¹⁹

1-Butyl-3-methylimidazolium hexafluorophosphate (BMImPF₆), 1-hexyl-3-methylimidazolium hexafluorophosphate

Table 1 Effect of the scCO₂/IL system on the hydrosilylation reaction of styrene with triethoxysilane^a

						Selectivity (%)			
Entry	Catalyst (mol%)	Co-catalyst	Solvent (mL)	Co-solvent	Conversion (%)	β	α	By-product ^b	TON
1	RhCl(PPh ₃) ₃ (0.1)	_	BMImPF ₆ (2)	_	78.1	81.2	16.5	2.3	781
2	RhCl(PPh ₃) ₃ (0.05)	_	$scCO_2$	_	92.5	49.7	48.3	2.0	1850
3	RhCl(PPh ₃) ₃ (0.05)	_	$BMImPF_6$ (2)	$scCO_2$	91.6	81.3	16.7	2.0	1832
4	$[RhCl(COD)]_2$ (0.025)	KO'Bu	$BMImPF_6$ (2)	$scCO_2$	73.9	62.0	38.0	_	1478
5	$RhCl(PPh_3)_3$ (0.1)	KO'Bu	$BMImPF_6$ (2)	$scCO_2$	100	84.5	15.5	_	1826
6	$RhCl(PPh_3)_3 (0.02)$	KO'Bu	$BMImPF_6$ (2)	$scCO_2$	54.3	86.3	13.7	_	2715
7	RhCl(PPh ₃) ₃ (0.05)	KO'Bu	$BMImPF_6$ (2)	$scCO_2$	91.3	85.8	14.2	_	1826
8	RhCl(PPh ₃) ₃ (0.05)	KO'Bu	$BMImPF_6$ (4)	$scCO_2$	91.5	85.6	14.4	_	1830
9	RhCl(PPh ₃) ₃ (0.05)	KO'Bu	$BMImPF_{6}$ (6)	$scCO_2$	91.4	85.9	14.1	_	1828
10	RhCl(PPh ₃) ₃ (0.05)	_	$HMImPF_{6}(2)$	$scCO_2$	89.4	84.4	11.3	4.3	1788
11	RhCl(PPh ₃) ₃ (0.05)	KO'Bu	$HMImPF_6$ (2)	$scCO_2$	89.1	89.2	10.8	_	1782
12	RhCl(PPh ₃) ₃ (0.05)	_	$BMImBF_4(2)$	_	66.4	75.4	15.6	9.0	1328
13	RhCl(PPh ₃) ₃ (0.05)	KO'Bu	$BMImBF_4(2)$	$scCO_2$	84.2	83.2	16.8	_	1684
14	RhCl(PPh ₃) ₃ (0.05)	NaOH	$BMImPF_6$ (2)	$scCO_2$	90.4	81.5	15.8	2.7	1808

^a Reaction conditions: styrene 30 mmol, triethoxysilane 36 mmol, RhCl(PPh₃)₃ based on styrene, KO'Bu based on styrene, 80 bar, 70 °C, 2 h.

 $^{^{\}it b}$ By-product: ethylbenzene; no unsaturated adduct.

Table 2 Effect of IL on the hydrosilvlation reaction of styrene with triethoxysilane^a

				Selectivity (%)		
Entry	Catalyst	scCO ₂ /IL	Conv. (%)	β	α	TON^b
1	RhCl(PPh ₃) ₃ –KO ^t Bu	scCO ₂ /BMImPF ₆	91.3	85.8	14.2	1826
2	3,3	scCO ₂ /HMImPF ₆	89.1	89.2	10.8	1782
3		scCO ₂ /OMImPF ₆	85.4	92.3	7.7	1708
4		scCO ₂ /OEImPF ₆	82.1	96.1	3.9	1642
5		scCO ₂ /OBImPF ₆	75.8	98.7	1.3	1516
6^c		scCO ₂ /BMImPF ₆	87.3	86.1	13.9	1746
7^d		scCO ₂ /BMImPF ₆	81.2	86.7	13.3	1624
8^e		scCO ₂ /BMImPF ₆	78.5	87.2	12.8	1570
9	[RhCl(COD)] ₂ –KO ^t Bu	scCO ₂ /BMImPF ₆	73.9	62.0	38.0	1478
10	. ,,,,,	scCO ₂ /HMImPF ₆	68.2	70.1	29.9	1364
11		scCO ₂ /OMImPF ₆	63.1	76.3	23.7	1262
12		scCO ₂ /OEImPF ₆	58.8	81.5	18.5	1170
13		scCO ₂ /OBImPF ₆	50.3	86.7	13.3	1006

^a Reaction conditions: styrene 30 mmol, triethoxysilane 36 mmol, RhCl(PPh₃)₃ 0.05 mol% based on styrene, KO'Bu 0.05 mol% based on styrene, [RhCl(COD)]₂ 0.025 mol% based on styrene, IL 2 mL, 80 bar, 70 °C, 2 h. No by-product: unsaturated-adduct and ethylbenzene. ^b Based on Rh. ^c Second run. ^d Third run. ^e Fourth run.

Table 3 The effect of temperature on the hydrosilylation reaction of styrene with triethoxysilane

				Select		
Entry	$scCO_2/IL$	$Temperature/^{\circ}C$	Conversion (%)	β	α	TON
1	scCO ₂ /BMImPF ₆	50	44.1	89.1	10.9	882
2	_, _	70	91.3	85.8	14.2	1826
3		90	100	78.0	22.0	2000
4		110	100	70.3	29.7	2000
5	scCO ₂ /HMImPF ₆	70	89.1	89.2	10.8	1782
6	2,	90	100	81.1	18.9	2000

^a Reaction conditions: styrene 30 mmol, triethoxysilane 36 mmol, RhCl(PPh₃)₃ 0.05 mol% based on styrene, KO^tBu 0.05 mol% based on styrene, IL 2 mL, 80 bar, 2 h. No by-product: unsaturated-adduct and ethylbenzene.

Table 4 Results of the hydrosilylation reaction of other alkenes with triethoxysilane^a

					Selectivity (%)			
Entry	Alkene	Silane	Solvent	Conversion (%)	β	α	By-product	TON
1	1-Hexene	Triethoxysilane	scCO ₂ /BMImPF ₆	100	100	_	_	10000
2		•	scCO ₂ /HMImPF ₆	100	100	_	_	10000
3			scCO ₂ /OMImPF ₆	100	100	_	_	10000
4			scCO ₂ /OEImPF ₆	~	100	_	_	~
				100				10000
5			scCO ₂ /OBImPF ₆	99.9	100	_	_	9990
6	1-Heptene		scCO ₂ /BMImPF ₆	100	100	_	_	10000
7	1-Octene		scCO ₂ /BMImPF ₆	~	100	_	_	~
				100				10000
8	1-Dodecene		scCO ₂ /BMImPF ₆	99.9	100	_	_	9990
9^b	2-Methyl-styrene		scCO ₂ /BMImPF ₆	89.8	87.7	12.3	_	1796
10^{b}	4-Methyl-styrene		scCO ₂ /BMImPF ₆	93.7	82.6	17.4	_	1874
11^{b}	4-Methoxy-styrene		scCO ₂ /BMImPF ₆	95.8	79.5	20.5	_	1916
12^{b}	4-Fluoro-styrene		scCO ₂ /BMImPF ₆	94.1	90.1	9.9	_	1882
13^{b}	4-Chloro-styrene		scCO ₂ /BMImPF ₆	93.6	89.6	10.4	_	1872
14 ^c	Styrene	Triethylsilane	$scCO_2/BMImPF_6$	100	67.6	2.7	29.7	2000

^a Reaction conditions: alkene 30 mmol, triethoxysilane 36 mmol, RhCl(PPh₃)₃ 0.01 mol% based on styrene, KO'Bu 0.01 mol% of styrene, IL 2 mL, 80 bar, 70 °C, 2 h. ^b Reaction conditions: styrene 30 mmol, triethoxysilane 36 mmol, RhCl(PPh₃)₃ 0.05 mol% based on styrene, KO'Bu 0.05 mol% of styrene, IL 2 mL, 80 bar, 70 °C, 2 h. ^c Reaction conditions: styrene 30 mmol, triethylsilane 36 mmol, RhCl(PPh₃)₃ 0.05 mol% based on styrene, KO'Bu 0.05 mol% of styrene, IL 2 mL, 80 bar, 70 °C, 2 h. By-product: unsaturated adduct, no alkane.

(HMImPF₆), 1-octyl-3-methylimidazolium hexafluorophosphate (OMImPF₆), 1-octyl-3-ethylimidazolium hexafluorophosphate (OEImPF₆), 1-octyl-3-butylimidazolium hexafluorophosphate (OBImPF₆) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF₄) were prepared as previously described.²⁰

Gas chromatography (GC): TRACE DSQ GC, column DB-5 30 m \times 2.5 mm \times 0.25 μ m, split 50:1, flow rate 1 mL min⁻¹ constant flow, inlet temperature 260 °C, column temperature 50 °C for 1 min then 15 °C min⁻¹ increase to 260 °C (held for 10 min).

 1 H and 13 C NMR spectra were measured using a Bruker AV400 MHz spectrometer operating at 400.13 and 100.62 MHz, respectively. Chemical shifts for 1 H and 13 C NMR spectra were recorded (in ppm) relative to the residual proton of CDCl₃. 1 H NMR δ 7.24; 13 C NMR δ 77.0.

3.2 Hydrosilylation of alkylene with triethoxysilane

A typical hydrosilylation reaction procedure was as follows: IL, catalyst, styrene and triethoxysilane were charged into a 100 cm³ stainless steel autoclave reactor (high pressure chemical reactor; HPR-series, Supercritical Fluid Technologies, Inc.). A high pressure pump was used to introduce CO₂ into the reactor, which was maintained at the desired temperature. The reaction in CO₂ took place with stirring (about 500 rpm) for 2 h. After the reaction, the reactor was cooled to room temperature and the pressure released slowly. The product phase was separated from the catalyst by scCO₂, and the conversion of alkene and selectivity determined by GC analysis. The catalyst was recharged with fresh alkene and silane, and the crude product purified by distillation. All data in the tables are the average values of three experiments (Scheme 1).

Analysis of the products of the hydrosilylation reaction of styrene with triethoxysilane²¹

β-Adduct [triethoxy(phenylethyl)silane]. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.00 (t, J = 8 Hz, 2H, Si–CH₂), 1.24 (t, J = 8 Hz, 9H, CH₃), 2.74 (t, J = 8 Hz, 2H, CH₂), 3.84 (q, J = 8 Hz, 6H, O–CH₂), 7.16–7.27 (m, 5H, Ph).

 α -Adduct [triethoxy(1-phenylethyl)silane]. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.18 (t, J=8 Hz, 9H, CH₃), 1.33 (d, J=8 Hz, 3H, CH₃), 3.65 (q, J=8 Hz, 1H, Si–CH), 3.76 (q, J=8 Hz, 6H, O–CH₂), 7.12–7.19 (m, 5H, Ph).

Ethylbenzene. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.15 (t, J = 8 Hz, 3H, CH₃), 2.64 (q, J = 8 Hz, 2H, CH₂), 7.11–7.25 (m, 5H, Ph).

Hydrosilylation reaction of 1-hexene with triethoxysilane

β-Adduct [hexyltriethoxysilane]. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 0.64 (t, J = 6 Hz, 2H, Si–CH₂), 0.89 (t, J = 8 Hz, 3H, CH₃), 1.22–1.42 (m, 17H, CH₂ CH₃), 3.81 (q, J = 8 Hz, 6H, O–CH₂).

Hydrosilylation reaction of styrene with triethylsilane

β-Adduct [triethyl(phenylethyl)silane]. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 0.66 (q, J = 8 Hz, 6H, Si–CH₂), 0.92 (t, J = 8 Hz, 9H, CH₃), 0.98 (t, J = 8 Hz, 2H, Si–CH₂), 2.71 (t, J = 8 Hz, 2H, CH₂), 7.11–7.27 (m, 5H, Ph).

$$R \xrightarrow{\text{HSi}(R^1)_3} \xrightarrow{\text{Rh Complex}} R \xrightarrow{\text{Si}(R^1)_3} \alpha\text{-adduct}$$

$$R \xrightarrow{\text{Si}(R^1)_3} \beta\text{-adduct}$$

$$R \xrightarrow{\text{Si}(R^1)_3} \beta\text{-adduct}$$

$$R \xrightarrow{\text{Si}(R^1)_3} \alpha\text{-adduct}$$

Scheme 1 The hydrosilylation of alkenes with triethoxysilane or triethylsilane catalyzed by rhodium complexes.

 α -Adduct [triethyl(1-phenylethyl)silane]. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 0.69 (q, J=8 Hz, 6H, Si–CH₂), 0.97 (t, J=8 Hz, 9H, CH₃), 1.21 (d, J=9 Hz, 3H, CH₃), 3.58 (q, J=8 Hz, 6H, O–CH₂), 7.15–7.23 (m, 5H, Ph).

Unsaturated adduct [triethyl(styryl)silane]. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 0.93 (t, J = 9 Hz, 9H, CH₃), 1.33 (q, J = 8 Hz, 6H, Si-CH₂), 6.47 (d, J = 12 Hz, 1H, SiCH), 6.98 (d, J = 12 Hz, 1H, CHPh), 7.16–7.34 (m, 5H, Ph).

3.3 Synthesis of the rhodium N-heterocyclic carbine complex

Synthesis of 1-methyl-3-butylimidazolium-2-carboxylate. A mixture of 10.23 g (0.036 mol) of 1-methyl-3-butylimidazolium hexafluorophosphate, 4.03 g (0.036 mol) of K^tOBu and 30 mL of dry dimethylformamide was placed into a stainless steel autoclave fitted with a stirrer (Scheme 2). The autoclave was closed and pressurised by the introduction of CO₂ to 80 bars (1 bar = 0.1 MPa). The mixture was heated to $100 \,^{\circ}\text{C}$ and kept at that temperature for 12 h. The reaction was stopped, the reactor cooled and the CO₂ released. The reaction mixture was filtered and transferred into a 100 mL tube at room temperature. After evaporation of the solvent under reduced pressure and recrystallization from CH₃CN, 4.59 g (70% yield) of a light yellow solid was obtained and characterized as 1-methyl-3-butylimidazolium-2-carboxylate. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 0.96 (t, J = 8 Hz, 3H, CH₃), 1.39 (m, 2H, CH₂), 1.90 (m, 2H, CH₂), 4.16 (s, 3H, N-CH₃), 4.34 (t, J = 8 Hz, 2H, N-CH₂), 7.59 (br s, 1H, Im), 7.74 (br s, 1H, Im)

Chloro(1,5-cyclooctadiene)(1-butyl-3-methylimidazole-2-ylidene)rhodium (1). This compound was prepared by stirring a mixture of 500 mg (1.01 mmol) of bis(1,5-cyclooctadiene) dichlorodirhodium and 404 mg (2.2 mmol) of 1-methyl-3-butylimidazolium-2-carboxylate in 10 mL of acetonitrile in a Schlenk flask for 40 min at room temperature. The reaction mixture was evaporated under reduced pressure and washed with diethyl ether (3 × 10 mL). The yellow solid was dissolved in dichloromethane (2 mL) and purified by repeated recrystallization from diethyl ether to give 683 mg (88% yield) of a yellow powder. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.81 (d, J = 4 Hz, 2H), 5.01 (m, 2H, COD CH), 4.49 (m, 2H, N-CH₂), 4.07 (s, 3H, N-CH₃), 3.34 (br s, 1H, COD CH), 3.25 (br s, 1H,

$$\begin{array}{c|c}
N & PF_6^{-} & K'OBu \\
N & CO_2, 80atm
\end{array}$$

$$\begin{array}{c|c}
N & O \\
N & O \\
N & O \\
\end{array}$$

$$\begin{array}{c|c}
N & O \\
N & O \\
\end{array}$$

$$\begin{array}{c|c}
N & O \\
N & O \\
\end{array}$$

$$\begin{array}{c|c}
N & O \\
N & O \\
\end{array}$$

$$\begin{array}{c|c}
N & O \\
N & O \\
\end{array}$$

$$\begin{array}{c|c}
N & O \\
N & O \\
\end{array}$$

$$\begin{array}{c|c}
N & O \\
N & O \\
\end{array}$$

$$\begin{array}{c|c}
N & O \\
\end{array}$$

Scheme 2 Synthesis of the *N*-heterocyclic carbene–rhodium complex.

COD CH), 2.38 (m, 4H, COD CH₂), 1.98 (br m, 6H, 4H COD CH₂ and 2H Bu CH₂), 1.47 (m, 2H, Bu CH₂), 1.04 (t, J = 8 Hz, 3H, CH₃); 13 C 1 H 1 NMR (CDCl₃, 100 MHz) δ (ppm) 13.79, 18.42, 28.55, 32.58, 33.01, 37.73, 50.47, 58.40, 67.23 (d, $^{1}J_{Rh-C} = 14$ Hz), 98.25 (d, $^{1}J_{Rh-C} = 7$ Hz), 120.13, 121.95, 181.78 (d, $^{1}J_{C-Rh} = 50$ Hz). These data are consistent with those reported in the literature. ¹⁸ Analysis calculated for (C₁₆H₂₆RhN₂Cl): C, 49.95; H, 6.81; N, 7.28. Found: C, 49.89; H, 6.90; N, 7.26%.

4. Conclusion

In summary, during the hydrosilylation of styrene with triethoxysilane in a scCO₂/IL system, Rh(PPh₃)₃Cl had a high level of catalytic activity and selectivity for the β-adduct. When KO'Bu was added, no by-product was detected in the scCO₂/BMImPF₆ system. It is possible that a rhodium N-heterocyclic carbine complex was formed in the hydrosilylation reaction, with the PPh₃ being thought to improve the catalytic activity and selectivity of the rhodium complex. The rhodium complex was insoluble in scCO₂ but soluble in the ILs. The reactants and products were soluble in ILs under these reaction conditions, whereas they were resident in the scCO₂ phase before and after the reaction; therefore, the catalyst/IL can be reused. The substituents attached to the N,N-dialkylimidazolium cation had a strong impact on the catalytic process; the selectivity for the β-adduct clearly increased with increasing length of the alkyl chain attached to the N,N-dialkylimidazolium cation.

Acknowledgements

We thank the Zhejiang Province Technologies R&D Program (2008C14041) and the Foundation of Zhejiang Educational Committee (20070466) for financial support.

References

- M. Bocevska and H. Sovová, J. Supercrit. Fluids, 2007, 40, 360–367.
- 2 Y. Bai, H. J. Yang, C. Quan and C. Y. Guo, J. Chem. Eng. Data, 2007, 52, 2074–2076.
- 3 F. Gaspar, S. Santos and M. B. King, *Ind. Eng. Chem. Res.*, 2000, 39, 4603–4608.
- 4 M. Durando, R. Morrish and A. J. Muscat, J. Am. Chem. Soc., 2008, 130, 16659–16668.
- 5 S. Hadida, M. S. Super, E. J. Beckman and D. P. Curran, J. Am. Chem. Soc., 1997, 119, 7406–7407.
- 6 A. Fürstner, L. Ackermann, K. Beck, H. Hori, D. Koch, K. Langemann, M. Liebl, C. Six and W. Leitner, J. Am. Chem. Soc., 2001, 123, 9000–9006.
- 7 P. B. Webb, M. F. Sellin and T. E. Kunene, J. Am. Chem. Soc., 2003, 125, 15577–15588.
- 8 C. P. Mehnert, R. A. Cook, N. C. Dispenziere and M. Afeworki, J. Am. Chem. Soc., 2002, 124, 12932–12933.
- 9 J. van den Broeke, F. Winter, B. J. Deelman and G. V. Koten, *Org. Lett.*, 2002, 4, 3851–3854.
- 10 B. Weyershausen, K. Hell and U. Hesse, *Green Chem.*, 2005, 7, 283–287.
- 11 H. Maciejewski, K. Szubert, B. Marciniec and J. Pernak, *Green Chem.*, 2009, 11, 1045–1051.
- 12 C. Wu, J. J. Peng, J. Y. Li, Y. Bai, Y. Q. Hu and G. Q. Lai, *Catal. Commun.*, 2008, **10**, 248–250.
- 13 N. Hofmann, A. Bauer, T. Frey, M. Auer, V. Stanjek, P. S. Schulz, N. Taccardi and P. Wasserscheid, Adv. Synth. Catal., 2008, 350, 2599–2609.
- 14 J. J. Peng, J. Y. Li, Y. Bai, W. H. Gao, H. Y. Qiu, H. Wu, Y. Deng and G. Q. Lai, J. Mol. Catal. A: Chem., 2007, 278, 97–101.
- 15 L. A. Blanchard, D. Hancu, E. J. Beckman and J. F. Brennecke, *Nature*, 1999, 399, 28–29.
- 16 P. G. Jessop, R. R. Stanley, R. A. Brown, C. A. Eckert, C. L. Liotta, T. T. Ngo and P. Pollet, *Green Chem.*, 2003, 5, 123–128.
- 17 R. A. Brown, P. Pollet, E. McKoon, C. A. Eckert, C. L. Liotta and P. G. Jessop, J. Am. Chem. Soc., 2001, 123, 1254–1255.
- 18 A. M. Voutchkova, M. Feliz, E. Clot, O. Eisenstein and R. H. Crabtree, J. Am. Chem. Soc., 2007, 129, 12834–12846.
- 19 J. A. Osborn and G. Wilkinson, Inorg. Synth., 1967, 10, 67-71.
- 20 P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. de Souza and J. Dupont, *Polyhedron*, 1996, **15**, 1217–1219.
- 21 J. Li, J. Peng, Y. Bai, G. Zhang, G. Lai and X. Li, J. Organomet. Chem., 2010, 695, 431–436.